Transference inequalities for multiplicative diophantine exponents

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicative Diophantine Exponents of Hyperplanes

We study multiplicative Diophantine approximation property of vectors and compute Diophantine exponents of hyperplanes via dynamics.

متن کامل

Multiplicative Diophantine Exponents of Hyperplanes and their Nondegenerate Submanifolds

We consider multiparameter dynamics on the space of unimolular lattices. Along with quantitative nondivergence we prove that multiplicative Diophantine exponents of hyperplanes are inherited by their nondegenerate submanifolds.

متن کامل

Multiplicative Transference Principle

We give partial improvement of multiplicative transference principle proved

متن کامل

Multiplicative Diophantine approximation

In his paper, Dirichlet gives a complete proof for n = 1 and observes that this proof can be easily extended to arbitrary values of n. Good references on this topic are Chapter II of [52] and Cassels’ book [17]. There are in the literature many papers on various generalisations of the Dirichlet Theorem and on closely related problems. A typical question asks whether for a given set of mn real n...

متن کامل

Exponents of Inhomogeneous Diophantine Approximation

– In Diophantine Approximation, inhomogeneous problems are linked with homogeneous ones by means of the so-called Transference Theorems. We revisit this classical topic by introducing new exponents of Diophantine approximation. We prove that the exponent of approximation to a generic point in R n by a system of n linear forms is equal to the inverse of the uniform homogeneous exponent associate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Steklov Institute of Mathematics

سال: 2011

ISSN: 0081-5438,1531-8605

DOI: 10.1134/s0081543811080153